
Power Electronics and Drives

Power Electronics and Drives
Volume 9(44), 2024  DOI: 10.2478/pead-2024-0026

446

RET
RACTE

DResearch paper

1Electrical Engineering Department, University Yahia Fares, Medea, Algeria
2Automatic Department, National Polytechnic School, Algiers, Algeria
3Electrical Engineering Department, University Yahia Fares, Medea, Algeria
4Electrical Engineering Department, University of Haute Alsace, Mulhouse, France

Djamel Eddine Beladjine1,* , Djamel Boudana2 , Abdelhafidh Moualdia3 , Patrice Wira4

Contribution to a New Algorithm to Perform an 
Automatic Self-Calibration of Current Sensors

1. Introduction
Mainly, all sensors, especially low-cost sensors, are sensitive to different disturbances (i.e. temperature changes, 
magnetic interferences, etc.). They are noisy and suffer from a nonlinearity behaviour; moreover, many of them 
require calibration before and even during the functioning of the sensor by doing self-calibration, depending on 
the application that is used for it; in addition, some of the cheap sensors that are available in the market are 
provided without defined input-to-output characteristics (i.e., the ZMPT101B voltage sensor; Kurniawan et al., 
2022). Therefore, it is necessary to find out these characteristics by doing some experiments on the sensor, to use 
it efficiently.

Calibration of current sensors is of paramount importance in the realm of controlling systems and fault-tolerant 
control methodologies (Hong et al., 2023; Teler and Orłowska-Kowalska, 2023). Accurate measurements of 
electric current are indispensable for upholding control performance, making fault detection easier (Adamczyk 
and Orlowska-Kowalska, 2023), ensuring system safety, optimizing energy utilization, enhancing robustness, and 
adhering to stringent industry standards. Through meticulous calibration procedures (Djokic and So, 2005), current 
sensors enable control systems to make judicious decisions, promptly identify deviations, mitigate potential risks, 
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and optimize energy efficiency. Consequently, calibration serves as a cornerstone in guaranteeing the precision, 
reliability, and safety of contemporary control systems, thereby laying a solid foundation for further investigation and 
advancement within scientific and engineering domains.

Different calibration techniques were developed starting with the classical techniques as assumed and used 
such as the multivariable regression technique, which required a precise current source; also, there are potential 
power dissipation issues in high current scenarios (Badura et al., 2019; Lifton and Liu, 2020), that in most cases 
necessitate specific materials, consume time and require effort, as they are mostly based on minimizing the all-
known measurement errors. Other advanced techniques were developed, such as compensation with artificial 
networks and statistical methods that require specialized equipment, software, and sophisticated simulation tools 
(Cordero et al., 2018; Khan et al., 2003; Pertijs, 2014). To efficiently approximate the characteristics of the sensor, 
however, despite the efficient results obtained from the above-mentioned techniques, they still consume time 
when training the model and collecting the training data points and choosing the optimal parameters, and require 
knowledge of the statistical characteristics of the sensor, specifying whether they require only a specific type of 
sensors (smart sensors) or multiple sensors (Hwang et al., 2021).

In opposite, the represented algorithm in this paper has been able to solve and reduce those problems, as it 
performs automatic self-calibration and does not require precise, known input values; in addition, it saves time and 
effort. It uses a set of collected raw data by the sensor for a well-known-amplitude, sinusoidal input signal that we 
refer to as  the reference signal to calibrate the sensor (Wu et al., 2020), allowing increasing the accuracy of the 
measurements and calibrating the sensor in less time and effort, and without the need of changing the parameters’ 
input source.

The technique is based on collecting a set of measurements by the sensor for a sinusoidal- input reference 
signal with well-known amplitude and then using the provided algorithm to converge to the exact frequency and 
the phase values of the reference signal, and, finally, finding the best fit of the measured data versus the estimated 
sinusoidal reference signal by using the algorithm. The output of this algorithm is a mapping function that can be 
a nonlinear function, which can be also used later to convert any raw output of the sensor to an estimation of the 
real, measured signal.

The present paper is organized as follows: first, we present the description of the proposed algorithm used to 
extract the mapping function, including all the parameters and data to develop a mathematical model, and the entire 
approach through sequential steps, thereafter; this algorithm has been implemented by using an ACS712T 20 Amp, 
low-cost current sensor via the Atmel SAM3X8E ARM (Advanced RISC Machine) microcontroller board to obtain 
the results presented and discussed in the final section.

2. Algorithm Description
The algorithm sequentially executes a series of tasks aimed at estimating the input-to-output model of a sensor as 
shown in Figure 1, relying solely on the well-established amplitude of a sinusoidal input signal and a set of recorded 
raw data from the sensor corresponding to that sinusoidal input. This algorithm comprises 10 distinct steps, outlined 
as follows:

The algorithm consists of 10 steps that are represented as follows.

  

ℎ  
 

∆  
 

 ∈ ℝN×1 (   ) 

  

( ) 

Figure 1. The algorithm inputs/output.
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2.1. Collect the raw data
The initial step involves the collection of raw data from the sensor. N samples of raw data, denoted as S ∈ R(N × 1), 
are gathered utilizing the Analogue-to-Digital Converter (ADC) while the sensor is exposed to a sinusoidal reference 
signal with a known amplitude. It is essential to ensure that N significantly exceeds T/∆t, where T represents the 
predetermined period of the reference input signal and ∆t denotes the sampling time. Subsequently, the collected 
data is stored after eliminating any existing DC offset, facilitating subsequent processing. Additionally, the algorithm 
requires an initial frequency value for the sinusoidal reference input signal, which need not be precise and can be 
arbitrarily selected within defined constraints, to prevent the system from diverging.

2.2. Estimating the zero-crossing point (ZCP) time in the collected data
Estimating the ZCPs involves identifying each successive sign change in the collected sample data S and computing 
the zero-crossing time through linear interpolation between these points. Following the linear interpolation (Hu et al., 
2022), the linear estimation around each ZCP is represented by the following sub-algorithm:

For n ranging from 1 to N−1.

 ( ) ( )( )if : × +1 < 0S n S n
 

and

 

( +1) ( )( ) = ,
( +1)
S n S ns sa k
n t n t

−
∆ − ∆   (1)

Here, 1 
SS Ka ×∈  is an array of slopes representing the linear interpolation around each pair of successive 

sign change points, with kS indexing each zero crossing, and KS is the total number of detected ZCPs. The other 
parameter bS is calculated as follows.

 

( ) ( ) ( )
( )

2 × ×  if  00
,0

2 × ×  otherwise0
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crossing, and SK  is the total number of detected ZCPs. The other parameter Sb  is calculated as follows.

 
( )  ( ) +  ( +1) ( ) (   + ( +1)  )2 2 = ,

2

s sS n S n a k n t n tb k − ∆ ∆  (2)

The vector 1SS Kb ×∈  contains the parameters of the linear interpolation for each ZCP.
These parameters facilitate the precise estimation of zero crossing times in the sampled data.
To determine the precise zero crossing time ( )0

S St k  for each crossing point Sk , the function ( )S Sy k  is set to zero. 
This is achieved through the following computation:

 

( ) ( ) ( )= + ,

[ ,( +1) ]

s s s s s sy k a k t b k

t n y n t∈ ∆ ∆
 (3)

where 0
St  is a SK -dimensional vector containing the estimated zero crossing times. These calculated times provide 

precise references for the occurrence of zero crossings in the sampled data.
Sy  is an SK  dimensional function vector containing the linear interpolation around the detected ZCPs.

For each ZCP Sk , we calculate the zero-crossing time ( )0
S St k  by putting ( ) 0S Sy k =  as follows.

 

For : = 1:1:

×1( )( ) = ,0 0( )

s sk K
s s sb ks s s kt k t Rs sa k

− ∈  (4)
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2.3. Estimating the phase
To estimate the phase, the following procedure is employed. Utilizing the estimated crossing time points ( )0

S St k  
along with the frequency f , the phase value at each crossing point is computed using the subsequent formula:

 

( )
( ) ( )
( )

0
0

0

2   if 0
,

2  otherwise

π
ϕ

π π

− × × × >

− × × × −

s s s s
s

t s s

f t k a k
k

f t k
 (5)

Here, ( )0
S

t kϕ  denotes the estimated phase at each detected ZCP Sk . Consequently, an array is generated, 
containing all the estimated phase values from each crossing point, denoted as 1

0

SK
tϕ

×∈ .
The estimated phase value is then computed by calculating the mean of 0tϕ , represented as

 

( )1 0= ,

sK ii t
sK

∑ ϕ=ϕ  (6)

Here, ϕ signifies the total estimated phase. This approach yields an array containing the estimated phase values 
at each crossing point, from which the overall phase value is determined, by averaging these individual estimates.

2.4. Generating a discrete, sinusoidal reference signal
To generate a discrete sinusoidal reference signal, a reference signal denoted as  R is generated and stored, 
represented as a vector in 1N× . This signal serves to represent the input signal and is generated utilizing the 
sample time t∆ , the frequency f , and the value of the estimated phase ϕ . The generation of the reference signal is 
described by the following Eq. (7):

 
( ) = 2  sin(2. .f.n. ),rmsR n A tπ ∆ + ϕ  (7)

where n ranges from 1 to N , and 2 rmsA  denotes the amplitude of the signal. This equation depicts the discrete 
sinusoidal signal R, wherein each sample ( )R n  is determined by the given parameters, including the sample time, 
frequency, and estimated phase.

 
( ) ( )

( )
1

0 0

for = 1:1:

= , 
R

R R

R R
R R R K

R R

k K

b k
t k t R

a k
×

− ∈
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where RK  is the total number of detected ZCPs of the generated samples  R.
Ra  and Rb  are both 1RK ×  dimensional arrays and are the parameters of the linear interpolation Ry  around each 

ZCP in the ( )R n  signal.

Zero-crossing time arrays’ dimension correction
Depending on the value of f , N and ϕ, the dimensions of the vector 0

Rt  might differ from the dimension of the vector 0
St :

In case the 0
Rt  dimension is higher than 0

St  dimension, we reconstruct the vector 0
Rt  by taking only the first 

elements that lead to equal dimensions.
Otherwise, if the dimensions of 0

St  are greater than the dimensions of 0 
Rt  we reconstruct the vector 0

St  by taking 
only the first elements that make the dimensions equal.

If one of those cases exist, either RK  or SK  will be changed to get

 ,R SK K K= =  (9)

This operation can also be done in another way (which is the one used to validate the result) by removing 
several excess terms from the start and end of the largest dimension array; taking into account the case of the old 
value of dimension, this method allows the dimension correction to be made in the middle.
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2.5. Calculate the zero-crossing-time error
To assess the accuracy of the estimated zero crossing times, the time difference between each estimated zero 
crossing time of the generated discrete sinusoidal reference signal R(n) and the collected data S(n) is computed. 
This calculation is expressed as

 
error
0 0 0 ,S Rt t t= −  (10)

Here, 0
errort  represents the time error, indicating the deviation between the estimated zero crossing times from 

the collected data ( )S n  and the generated reference signal ( )R n . It is noteworthy that this time difference, 0
errort  may 

exhibit noise due to inherent sensor noise.

2.6. Fitting the difference time vector t0
error

To fit the difference time vector 0
errort  using a first-order polynomial function, we express it as

 
0

1 2( ) ,
errorty k Pk P= +  (11)

Here, 1P and 2P  represent the coefficients of the linear function 0
errorty , which is the best fit in a least-squares sense 

of the 0
errort  data.

The calculation of 1P and 2P  involves forming the Vandermonde matrix V  with the given system
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0
error
0
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 − 
  
    

 (12)

 
error
0 .= tVP y  

This system can be expressed as 0
errortVP y= , where V  is the Vandermonde matrix.

The next step involves applying the QR factorization to the matrix V , which can be achieved using various 
methods (Anderson et al., 1992; Demeure and Scharf, 1989), including the Gram–Schmidt process (Leon et al., 
2013). This process decomposes the matrix V  into an orthogonal matrix  and an upper triangular matrix QRR .

To perform the Gram–Schmidt process, we first form the vectors 1 1 2, ,a e a , and 2e .
Vector 1a  is defined as

Vector a1:

 [ ] 1
1 1= 1 2 . . . 1 ,T Ka K K a R ×− ∈  (13)

And vector 1e  is obtained by normalizing 1a  as follows:

Vector e1:

 

1
1 2 2 2 2

e
1 2 (K 1) K

a
=

+ + + − +

 (14)

1
1

Ke R ×∈  

 
2 2 2 2 ( +1)(2 +1)1 + 2 + ... + ( 1) + = ,

6
K K KK K−  (15)

Q
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By substituting Eq. (14) in Eq. (15) we get:

 
1

 16
=

( +1)(2 +1)
a

e
K K K  (16)

Vector 2a  is defined as

Vector a2:

 
×1

2 2= [11 11] , T Ka a R∈  (17)

Vector e2:
And vector 2e  is computed using the formula
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12 2 1 1
2 2

2 2 1 11
2

( ) . ×

. ×= , e
(i)

K

K
i

i

a a e ee R
a a e e

×

=

−

∑ −
∈  (18)

Simplifying the expression for 2e , we get:

 
2 12

2(2 +1) 3 ( +1)= ,
( 1) 2(2 +1)
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 − × 
 
 −  (19)

2.7. Calculating the Q and R matrix
After forming the vectors 1e  and 2e , the matrices Q and QRR  are calculated using the following formulas:

 

1 2
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2.8. Calculating the P vector
Finally, the coefficient of best linear fitting of the system is given by

 

1 1

2

  error 
0= = ,

TtTQ y
P

P R
P

 
  
 

  −
 
 

 (21)

where 1P represents the estimated frequency f . 2P  represents the calculated phase ϕ, which depends on the value 
of frequency f ; hence, 2P  is indirectly affected by the frequency.

2.9. Convergence test and updating the frequency
After computing the coefficient vector 1

2

P
P

P
 

=  
 

 from the QR factorization, a convergence test is conducted to 

assess whether the conditions 
11 PP ε<  and 

22 PP ε<  are satisfied. If the convergence condition is not met, indicating 
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that the error is not within the acceptable range, the frequency f  is updated using the provided formula, and the 
algorithm iterates back to step C. The updated frequency is determined as

 new old gain 1= + × ,f f K P  (22)

Here, 
1Pε  and 

2Pε  are very small constants defining the acceptable error region to confirm convergence. These 
values need to be selected carefully. gainK  represents a gain controlling the convergence speed, and its selection is 
critical to ensure algorithm convergence.

Note that it is also possible to use other correction forms. The correction process can be observed graphically 
by visualizing the rotation of the 0

errorty  line around the center. Thus, the objective of steps H and I is to minimize 0
errort ,  

ensuring improved accuracy in the estimation of zero-crossing times.

2.10. Fit the collected raw data with the generated reference signal
After achieving convergence in step 9, a fitting process is conducted between the newly adjusted signal ( )R n  and 
the collected data ( )S n . This fitting is accomplished by selecting a fitting function F  and employing an algorithm to 
minimize the error between ( )S n  and ( )R n  by adjusting the parameters of the chosen function F.

The Vandermonde matrix technique, previously utilized for coefficient estimation, can be adapted to minimize 
the error between ( )S n  and ( )R n  when selecting a polynomial fitting function with a specific degree.

The objective is to minimize the following system:

 ( ( )) = ( ),F S n R n  (23)

The outcome of this algorithm is a function F that accepts the raw values from the sensor as inputs and converts 
them into estimations of the actual, measured input clarifies in Figure 2. However, the precision of the function F may 
still not be sufficient, especially when using a poor sensor. Therefore, for applications demanding higher precision, 
it may be necessary to combine the readings of other sensor(s) using a sensor fusion algorithm (Elmenreich, 2002; 
Yeong et al., 2021). 

3. Experimental results
The experimental section shows that the effectiveness of the proposed algorithm was validated using a current 
sensor, in particular the ACS712T 20 Amp current sensor. The experimental setup involved connecting the 
current sensor to the Atmel SAM3X8E ARM microcontroller to make it easier for the computer to collect data. 
The current sensor measured the current flowing to a power resistor connected to an AC source. To ensure 
compatibility with the ADC of the ARM SAM3X8E chip and avoid potential damage, a voltage divider was 
used to reduce the current sensor output range from 0–5 V to 0–3.3 V, cause the analogue input of the ARM 
SAM3X8E chip should not exceed 3.3 V, then reading the measured voltage using the 12-bit resolution ADC 
and dividing the measured value by the sensitivity characteristic of the sensor to find the final values of current 
in real time and collect the raw data to print the current evolution and apply the algorithm developed below in 
Figure 3.

The amplitude of the measured sinusoidal AC current was determined using the root mean square (RMS)arm 
value provided by a precise mustimeter. The collected data, denoted as S, underwent preprocessing to remove the 
DC offset by calculating the mean of several samples collected over a certain number of periods. Subsequently, 
the processed data S was input into a MATLAB (MATrix LABoratory) software script that executed the described 
algorithm.

In Figure 4, the amplitude values of the blue samples represent the readings from the ADC after removing the 
DC offset. The algorithm processes the AC input exclusively, which conforms to the form ( )2 sin 2rmsI ftπ ϕ+ . Due to 
the rapid changes in the rmsI  value caused by the grid AC source; it was necessary to collect data for a short period. 
The estimated crossing points were determined by the intersection of the linear interpolations of each successive 
opposite sign point with the x-axis, providing a clear indication of the algorithm’s functioning.

Throughout the iterative process, the algorithm dynamically evaluates the constructed signal R based on the 
calculated frequency and phase values. At each iteration, the ZCPs are estimated in exactly the same way as with 
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the input signal S, as illustrated in Figure 5. This process ensures the consistency and accuracy of the estimation 
procedure.

The graphical representation in Figure 6 depicts the iterative refinement of the ZCP time error correction 
between the signals S  and R across various iterations, where the slope of the linear fitting of 0  errort  serves as 
the parameter 1P.

Figure 2. The algorithm flow chart description.
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Figure 3. The implementation process. ADC, analogue-to-digital converter.

Figure 4. The collected S input (DC offset removed) and the detected ZCPs in the S signal. ZCPs, zero-crossing points.
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Furthermore, the process of frequency and phase correction in signal R relative to input signal S is illustrated 

across different iterations in Figure 7. Notably, signal R is amplified by a factor of 50 in the figure to enhance the 
visibility of the signal in the figure, to notice the frequency and phase correction effects compared to S.

The convergence of the algorithm towards the estimation of frequency and phase is evident across iterations, 
particularly when initialized with different initial values of f . Notably, the algorithm rapidly converges to these values, 
especially when a suitable initial value of f  is chosen. Achieving precision in the converged value of f  is crucial for 
obtaining accurate results (Figure 8); also the selection of small values for 

1Pε  and 
2Pε  to improve results.

The scatter plot of R values against S values shown in Figure 9 exhibits a non-linear pattern due to the presence 
of noise in the measurement process. This characteristic highlights an advantage of the algorithm, as it effectively 
fits all values, accommodating the noise inherent in the measurements. This capability is facilitated by the periodic 
input, enabling the measurement of various sensor outputs at identical input values. Additionally, users have the 
flexibility to select from an unlimited number of fitting functions, albeit with the consideration of the execution time 
when implementing the algorithm in microcontrollers for diverse applications.

The comparison is made between the application of the estimated mapping function F generated by the 
algorithm to the input S in Figure 10, and the application of the extracted input/output formula derived from the 
ACS712T datasheet (Lazarević et al., 2022) to the same input S.

The extracted input to output formula from the graph in the ACS712T datasheet (Leon et al., 2013) can be 
written as follows in our case.

 

2
12
3.3 3× ×10× = 1.2087×10 × ,

2 1 2
x x−   

   −   
 (24)

Here, x represents the DC-removed readings from the ADC.
Comparatively, the estimated input-to-output formula produced by the algorithm is represented as a polynomial 

function, as illustrated in Table A2 in Appendix, with the general form

 
5 4 3 2

5 4 3 2 1 0+ + + + + ,a x a x a x a x a x a  (25)

Figure 5. The generated signal R and the detected ZCPs in it at a random iteration (iteration = 60). ZCP, zero-crossing point.
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a)

b)

c)

Figure 6. The variation of 0
errort  and the linear interpolation function 0

errorty  at different iterations: (a) at iteration = 20, (b) at iteration = 40 and (c) at 
iteration = 85.

By ignoring the parameters 0 2 3 4 5, , , ,and a a a a a , we obtain

 
2

1 = 1.2552×10 ,a x x−  (26)

This outcome closely resembles the expression derived from the datasheet formula, validating that the algorithm 
is capable of estimating the formula for any sensor through a single experimental test. Additionally, the estimated 
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Figure 7. The signals S and R during the process: (a) at a random iteration (Iteration = 20) and (b) at the end of the frequency and the phase 
correction.

function includes the neglected terms, enhancing result accuracy compared to the datasheet. It is noteworthy that 
a one-degree polynomial function could have been chosen as a fitting function, solely to estimate the datasheet 
formula. Therefore, the advantages of the presented algorithm can be summarized as follows:

1. Efficiency in formula estimation: The algorithm streamlines the process of estimating input/output formulas for 
unknown or novel sensors, significantly reducing the time and effort required, by performing just one simple 
experiment.

2. Enhanced accuracy: By offering flexibility in selecting any mapping function and optimizing its parameters 
using a dataset as mentioned in Table A1, the algorithm enhances accuracy. It considers the nonlinearity 
behaviour and existing noise, allowing for more precise calibration.

An invaluable application of the algorithm lies in its implementation within the processing unit (Gao, 2018; Xu, 
2014) to calibrate current sensor arrays. Leveraging the sinusoidal power source and connected processing units, 
it offers significant advantages in sensor calibration (Shalamov, 2016).

4. Optimizing the Algorithm
The first step to optimize the elapsed time of the algorithm is to reduce the number of samples N , but keeping it 
satisfying theoretically TN

t
>
∆

.



Contribution to a new algorithm to perform an automatic self-calibration of current sensors

458

RET
RACTE

D
Figure 8. The convergence of f and ϕ for diffirent initial values of f: (a) initial frequency of 200 Hz, (b) initial phase of −2600 rad, (c) initial frequency 
of 50 Hz and (d) initial phase of −100 rad.

However, practically, it was proved that reducing the number of the samples highly affects the performances; 
therefore, the number of samples must be chosen carefully and kept as high as possible (advised 

∆


TN
t
). The higher  

the N is, the better the algorithm results are, but it is also limited by the storage capacity of the microcontroller unit 
in the case of applying the algorithm in a microcontroller instead of a to a computer, wherein a tradeoff needs to be 
done between the desired performance and the storage capacity of the device.

As the phase is calculated by taking the mean and since the dimension correction is made at the middle, the 
error 0

errort  can be considered to be symmetrical, and that allows us to reduce the size of the Vandermonde matrix V  
and re-define the system in the following way:

 

error
0

opt opt= ,

0 < < ,
2

tV P y
Kd

 (27)

 

error
0
error
0

1

2

error
0
error
0

( )        1
( +1)+1     1

.          1 .

.          1 = . ,

.          1 .
1  1 ( 1)

     1 ( )

t dd
t dd

P
P

K d t K d
K d t K d

  
  
  
  
   
   
   
  
 − −  − −
  −    −   
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Figure 9. The scatter plot of R(S) and the estimated fitting function F.

Figure 10. The results of applying F to S compared to the results of using the ACS712T datasheet formula and the estimated reference input R.
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The less d is, the better the results of the algorithm are, the higher time execution will be. By solving the new 

system using the same technique in step 8, we can find the vector 1

2

P
P
 
 
 

. Reducing the system’s dimension causes a 

loss of pieces of information and decreases the performance of the results, and it is not advised if it is not needed, 
as it can even lead to a non-convergence problem for a desired 

1Pε  and 
2Pε .

It is also possible to low-pass-filter the data 0
errort  and then select only few points to form the Vandermonde matrix. 

The chosen points can be done randomly or can be the mean of 0
errort  through a number of chosen sub-intervals.

This optimization decreases the execution time of the algorithm; however, it highly affects the performances of 
it and can lead to undesirable results if it was not performed carefully.

5. Conclusion
To conclude, the represented algorithm provides an efficient solution for calibrating a sensor, without requiring 
variable, precise input values, and it saves a lot of time and effort than when using the classical techniques to 
calibrate the sensor for each use. It provides us with an input/output mapping function that maps the raw values 
of the sensor to estimated values of the output, as the results shows. The algorithm can be used during each 
start of the measuring device to find the best mapping function. It can also be used during the functionality of the 
application, where in each loop, a part of the algorithm can be executed, to minimize the execution time needed 
to not highly affect the elapsed time of the device; in this way, it will perform a self-correction in the measurements 
and, therefore, rejecting any error that can be caused by external disturbances, making the measurements robust, 
and that makes it very useful for any number of applications.

The accuracy of the final result of this algorithm depends on the poor degree of the used sensor. However, when 
choosing an appropriate fitting function, the noise in the final estimation in most of cases is a white Gaussian noise, 
which gives us the benefit to mix the measured values with the results from other sensors, using fusion sensor 
algorithms to estimate the exact value of the input.

Further work can be done by developing techniques to minimize the calculations of the algorithm, to increase 
its convergence speed and the performances, or as discussed before, it can also be tested in real applications and 
doing self-tuning during the application functionality, to increase the performance of the system, and even mixed 
with other sensor reading, by taking the advantage of white noise as a convenience.
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Appendix
Table A1 represents the values of the parameters used in the experiment.

Table A2 shows the values calculated by the algorithm.

Table A1. The used parameters in the experiment.

ADC resolution 12 bits

N 2,412

∇t 0.0014 s

Irms 6 Amp

Initial f 50 Hz

Kgain 1,000

ε
1P 3.2691e-18

2Pε 5.7960e-07

The degree of the chosen polynomial interpolation mapping function 5

ADC, analogue-to-digital converter.

Table A2. The algorithm’s calculated values.

P1 −2.183 e-18

P2 4.042 e-7

f 49.9739 Hz
ϕ −532.4465 rad

F(x) 14 5 14 41.3 10  9 10x x− −× − ×
9 3 8 2 8.76 10 3.78 10x x− −− × + ×

2 21  .2552 10   2.3965 10x− −+ × − ×
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