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1. Introduction
The requirement for electrical energy has been gaining attention to meet consumption needs due to economic and 
technical advancements (Alsattar et al., 2020). Achieving energy demand based on oil, coal and gas sources is no 
longer profitable (Khattar et al., 2019). These are fossil fuels and non-renewable and are finite and unable to meet 
growing needs. They also present a global warming problem. This calls for a transition to renewable energy sources 
(El-Khatib et al., 2023; Singh, 2013). Solar energy, being abundant and ubiquitous, offers a promising solution to 
the energy crisis (Amiri et al., 2024; Farghally et al., 2023). Efficient analysis of solar energy systems requires 
understanding the characteristics and optimisation of solar cell designs. Various methods have been proposed to 
optimise these models photovoltaic (PV) system performance often relies on single or dual diode designs, with the 
latter providing more precise outputs. Accurate parameter estimation is essential to improve efficiency, performance 
and reliability, enabling systems to better match solar irradiation and enhance economic viability (Jordehi, 2016). 
As the complexity of the model increases with the addition of diodes, the number of parameters needed to optimise 
also increases: typically, five for one-diode models and seven for two-diode models. Optimising these parameters 
is crucial to maximise efficiency under various conditions. In recent work, researchers prefer single diode models 
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(SDMs) as the first model. To get closer to the reality of the cell model, they focussed on the double diode models 
(DDMs) for estimating electrical parameters, using iterative, metaheuristic and analytical methods. However, 
iterative and analytical methods have limitations, leading to a preference for metaheuristic algorithms (MHAs) due 
to their precision and fast convergence (Li et al., 2023).

Hybridisation of meta-heuristic algorithms is essential for extracting and identifying parameters of PV 
systems by combining the strengths of the War Strategy Optimization (WSO) (Ayyarao, T. S. & Kumar, P. P. 
2022)  and Hippopotamus Optimization (HO) algorithms (Amiri et al., 2024), a new algorithm called WSO-
HO has been developed. Integrating the Newton-Raphson (NR) method, simulations and case studies were 
conducted to evaluate the effectiveness of this approach. These case studies provide representative scenarios 
for a comparative assessment of different solar PV systems. Experimental results show that optimising SDM 
and DDM using the WSO-HO algorithm provides increased accuracy in parameter estimation as compared to 
the original algorithms WSO and HO. The proposed algorithm consistently achieves lower root mean square 
error (RMSE) values, indicating its superior performance in accurately estimating the (I, V) characteristics of 
SDMs and DDMs. Additionally, the convergence behaviour of the WSO-HO algorithm is faster and smoother 
than that of the WSO and HO algorithms. In that respect, performance measurements show that estimated and 
experimental results agree very well; this indicates the suggested approach’s capacity for appropriate modelling. 
The voltage-power curve (P, V) and the current-voltage curves (I, V) for the SDM and DDM models optimised 
with the WSO-HO algorithm closely match the experimental data. Moreover, according to a comparison study, 
WSO-HO performed better than other recent optimisation techniques. Among the methods considered, WSO-
HO allows consistently achieved the lowest RMSE value, demonstrating its effectiveness in fine-tuning the SD 
Model and DD Model parameters for the RTC France solar cell case study (Ayyarao,T. S. & Kumar, P. P. 2022). 
To some extent, the performance measurements of the WSO-HO algorithm showed that the estimated values 
closely matched the actual results from the experiments demonstrating the precise modelling capabilities of the 
proposed approach. Given that, the voltage-power curve (P, V) and current-voltage curve (I, V) characterise the 
SDM and DDM optimised; which using the WSO-HO algorithm closely matched the experimental data. Notably, 
this approach was compared to other recent optimisation techniques, such as those that combine gradients 
with a teaching-learning algorithm (Yu et al., 2023). Obviously, the improved butterfly flame enhancement 
algorithm based on local escape operators is elaborated by Qaraad et al. (2023). Besides, the Crisscross and 
Nelder-Mead algorithm, the gradient-based optimiser with differential evolution and the sine-cosine algorithm 
is developed by Yu et al. (2022). The dynamic multi-verse optimiser with leader the least squares chaos game 
optimisation and the artificial hummingbird optimization (AHO) are presented in Ekinci et al. (2024) and (Bogar, 
2023). Some previous works have widely developed such as, the reptile search algorithm with Cauchy mutation 
and opposition-based learning strategies, adaptive differential evolution with elite learning presented in Fan et 
al. (2022), the coyote optimization algorithm (Gu et al., 2023), The Hunger Games search with quantum Nelder-
Mead (Xu et al., 2022). As well as, in the bald eagle search (Alsattar et al., 2020), tunicate swarm optimization 
(Nicaire et al., 2021) and the improved tree growth algorithm (Arandian et al., 2022), all authors have highlighted 
the superior performance of WSO-HO. It consistently achieved the lowest RMSE value among all the methods 
considered. Similar observations were made for the optimisation of the SD Model and DD Model using the WSO-
HO approach, indicating its effectiveness in fine-tuning the parameters of the SDM and DDM for the RTC France 
solar cell in case study (Jordehi, 2016).

This paper is focussed on hybridisation of different algorithms to offer a compelling solution to address the 
inherent challenges and complexities of conventional optimisation approaches. By seamlessly integrating the 
strengths of multiple algorithms, hybridisation improves convergence speed and ensures robustness, adaptability 
and greater accuracy in parameter extraction for solar PV models. Despite its impressive results and potential, 
hybridisation still presents some challenges. Our work introduces a pioneering hybrid methodology that combines 
the WSO algorithm, the HO algorithm and the NR method. This innovative hybrid WSO-HO algorithm is specifically 
designed to enhance (P,V) parameter extraction, leveraging these algorithms’ combined strengths to get higher 
efficiency, robustness and convergence levels.

Our motivation and contribution are as follows:
The first improvement aims to refine the weight updating mechanism of the WSO algorithm. In the original 

WSO algorithm, the weights are updated linearly based on the number of iterations without improvement. However, 
in the modified WSO variant within WSO-HO, the exponent in the weight update formula is increased to 2. This 
adjustment enhances the exploratory nature of the algorithm, facilitating larger adjustments to the weights over the 
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course of successive iterations. Consequently, the modified WSO algorithm becomes more efficient in exploring 
various regions of the solution space, thereby reducing the risk of premature convergence to local optima.

The second improvement consists of integrating the third phase of the HO algorithm into the hybrid WSO-HO. 
This phase, renowned for its local search capabilities, strengthens convergence by refining solutions as close as 
possible to the best current solutions. By iteratively generating new solutions for each soldier using a predefined 
formula and evaluating their fitness against the objective function, the HO phase enhances the algorithm’s ability to 
navigate complex solution landscapes and converge towards optimal solutions.

The third and final modification integrates a permutation and exchange step between the two WSO algorithms 
and HO. This additional step diversifies the population by randomly permuting the solution components, thereby 
promoting deeper exploration of the solution space. By leveraging swap operations, the algorithm mitigates the risk 
of premature convergence and promotes the exploration of potentially promising solution regions.

Overall, integrating these modifications into the hybrid WSO-HO algorithm provides a sophisticated framework 
for extracting PV parameters with unprecedented convergence and efficiency. By synergistically combining the 
strengths of WSO and HO algorithms and incorporating local exploration, exploitation and refinement mechanisms, 
hybrid WSO-HO presents a robust approach to optimise parameter extraction processes in PV systems. Additionally, 
integrating the NR method further improves the convergence capabilities of the algorithm, ensuring reliable and 
precise estimation of the parameters of PV systems.

The remainder of the paper is organised as follows: Section 2 offers a concise examination of single and 
DDM for solar cells and we introduce the objective function that is used to extract parameters. The optimisation 
Algorithms, the WSO Algorithm and the HO Algorithm are examined in Sections 3 and 4, respectively, along with 
the formulation of a modified strategy. Section 5 presents the contributions and innovations made possible by 
the Modified Algorithm WSO-HO, highlighting its unique characteristics and uses. Section 6 gives the simulation 
results and parameter optimisation, which displays the results obtained from the modified model. Finally, we give 
concluding remarks on the hybrid model and the WSO-HO algorithm and outline potential directions for further 
investigation and study.

2. The PV Cell Modelling and Objective Purpose
2.1. The PV cells modelling
Extensive literature assessments highlight how crucial it is to comprehend the physical characteristics of PV cells in 
order to create effective models for solar systems. Note that, the SDM and DDM are proposed for a more precise 
representation and to characterise the behaviour of a solar cell (Qaraad et al., 2023).

The widely used equivalent circuit cell model is the SDM, which is based on basic physical concepts, and it is 
described by the equivalent circuit given in Figure 1a. Consequently, we have five unidentified parameters in this 
model that need to be determined (Amiri et al., 2024):

= − −L ph sd RshI I I I  (1)

 
(a) (b) 

Figure 1. Equivalent circuit cell model. (a) Equivalent circuit of SDM. (b) Equivalent circuit of DDM. DDM, double diode model; SDM, single diode 
model.
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Where IL is the PV cell load current, Iph is the PV cell photocurrent, and Isd is the reverse saturation current of the 
diode. Thus, IRsh is the shunt resistance current. Therefore, the diode current and the shunt resistance current are 
defined by Eqs (2) and (3) which refer to Khattar et al. (2019).

( )

1
L L Sq V I R
nKT

d sdI I e
+ 

= −  
 

 (2)

sh
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sh

V T I RI
R
+

=  (3)

Where: VL is the output voltage of the PV cell, Isd the diode reverse saturation current, and k constant of the 
Boltzmann. Moreover, Rs represents the series resistance, Rsh represents the parallel resistance, q is the charge of 
an electron, n denotes the diode ideality coefficient and T denotes temperature. Substitute Eqs (2) and (3) in Eq. (1), 
the load current of a PV cell is given by Eq. (4).
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 (4)

Five parameters that have not been known (Iph, Isd, Rs, Rsh, n) in Eq. (4) must be determined (Amiri et al., 2024). 
Moreover, the equivalent circuit for DDM can be used to calculate the output current, as illustrated in Figure 1b.

1 2L ph sd sd RshI I I I I= − − −  (5)

Applying the identical technique as in the SDM, the PV cell’s ultimate output current can be computed using 
Eq. (6):

( ) ( )
1 2

1 21 1
L L S L L Sq V I R q V I R
n KT n KT L L S

L ph sd sd
sh

V T I RI I I e I e
R

+ +    +   = − − − − −
   
   

 (6)

Note that, Isd1 and Isd2 are defined as the reverse saturation currents of the diodes D1 and D2, respectively. Thus, 
n1 and n2 are the ideality factors of the diodes D1 and D2, respectively. It follows that the DDM has seven unknown 
parameters (Iph, Isd1, Isd1, RS, Rsh, n1, n2). Obviously, in order to have well-known ones, they need to be estimated 
(Fan et al., 2022).

2.2. Objective purpose
This study confronts the challenge of parameter optimisation for the PV model. The established formulas are 
converted into homogeneous forms to overcome the hurdle of unknown parameters as presented in Qaraad et al. 
(2023). Let’s begin by examining the SDM, which can be expressed by the Eqs. (7) and (8):

( )
( )

, , 1
L L Sq V I R

L L SnKT
ph sd

sh

V T I Rf V I X I I e
R

+  +
= − − −  

 
 (7)

( ),  ,  ,  ,  ph sd s RshX I I R I n=  (8)

Moreover, examining the DDM model, which can be expressed as follows:

 ( )1 2 1 2,  ,  ,  ,  n ,nph sd sd s RshX I I I R I=  (9)
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In this study, we use the RMSE as an objective function

 
( )( )

1

1 , I ,
n

i i i i
m c m m

i
RMSE i i V X

N =

= −∑  (10)

We can quantify the agreement between the predicted and measured currents using the RMSE. In this context, 
the expression I = f(Vm) represents the current calculated by our model based on the measured voltage (Measured). 
Note that, Im is the actual measured current values and N is the total number of data points. The vector X contains 
the parameters we aim to extract from the PV model. Eq. (6) (Singh, 2013) shows that a lower RMSE signifies a 
better fit between the modelled and measured current data, indicating a more accurate extraction of the model’s 
parameters. Third, this method combines the hybrid WSO-HO optimization algorithm with the NR method.

To estimate the current for the SDM model, we have the non-linear equation defined by Eq. (11).

( )
( )

1
L L Sq V I R

L L SnKT
ph sd

sh

V T I Rh x I I e x
R

+  +
= − − − −  

 
 (11)

As well as, for the DDM, the non-linear equation is defined by Eq. (12):
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To analyse the performance of a photovoltaic (PV) system under various environmental conditions, an accurate 
mathematical model is essential. The parameters within this model inherently define the system’s performance, 
making their optimization a critical aspect of controlling and improving PV system efficiency. To achieve this, the 
model outputs are compared with measured data, as shown in Table 1, using the root mean square error (RMSE) 
as the objective function for optimization (Ayyarao, T. S. & Kumar, P. P. 2022). The study introduces a hybrid 
methodology, depicted in Figure 2, which integrates a metaheuristic algorithm with the Newton-Raphson (NR) 
method. The metaheuristic algorithm is employed to identify optimal initial parameters, while the NR method refines 
these parameters to solve the nonlinear equations with high precision, ensuring an error of less than 1E-4. This 
combined approach enhances the accuracy and reliability of the PV system model, enabling better performance 
analysis and optimization under varying environmental conditions.

3. The WSO Algorithm
Drawing inspiration from historical military campaigns, the WSO algorithm mimics the dynamic decision-making 
process of leaders. Just like a king and commanding officer adjusting tactics based on the battlefield, the WSO algorithm 
utilises cues to guide its algorithmic soldiers in their search for optimal solutions (Ayyarao, T. S. & Kumar, P. P. 2022).

Table 1. Experimental current (I) and voltage (V) data for RTC France PV cells using SDM and DDM.

Parameter 1 2 3 4 5 6 7 8 9

I (Ampere) 0.764 0.762 0.7605 0.7605 0.76 0.759 0.757 0.7557 0.755

V (Volt) −0.2057 −0.1291 −0.0588 0.0057 0.0666 0.1183 0.1678 0.2152 0.2618

Parameter 10 11 12 13 14 15 16 17 18

I (Ampere) 0.754 0.7505 0.746 0.7385 0.728 0.706 0.673 0.632 0.573

V (Volt) 0.2924 0.3269 0.385 0.3837 0.4173 0.4573 0.4798 0.4784 0.5119

Parameter 19 20 21 22 23 24 25 26

I (Ampere) 0.499 0.413 0.316 0.212 0.103 −0.01 −0.123 −0.21

V (Volt) 0.5319 0.5266 0.3983 0.5321 0.5533 0.5736 0.5833 0.59
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Note that, we present four steps to describe this strategy: The first stage is designated as a Random Attack, and 
in this stage, the opposing army is attacked by randomly assigned troops to represent algorithmic elements. The 
strongest individual, similar to the army general, supervises the different units. The second stage is an Attack 
Strategy; attacking the opposition is this strategy’s main objective. The King stands for the optimal result; he is the 
one who leads the troop. Obviously, when adjusting the algorithm’s parameters, the troops dynamically change their 
position according to the King’s and Commander’s positions. The third stage is a Signalling by Drums, notably, the 
King, or the best solution, gives orders to modify the strategy according to the conditions. According to these signals, 
the soldiers, or algorithmic elements, change strategies and organise their positions. In the fourth stage, owing to 
Defence Strategy, the primary objective is to protect the King, or retain the optimal solution. Within this framework, a 
central decision-making unit, analogous to a commander, strategically deploys algorithmic elements to safeguard a 
superior solution, represented by the King. These elements, akin to troops, meticulously explore the search space, 
dynamically adapting their search strategies to achieve optimal results in the face of an adversary (the optimisation 
challenge). The Commander and King functions, which are considered critical, are modelled mathematically in the 
War Strategy algorithm. Starting with the same weight and rank, the troops represent the algorithmic elements. 
Further the war goes on, the more their performances determine how much weight and range they have. The king 
is the soldier who can attack with the greatest force (Ayyarao and Kishore, 2024). Thus, every soldier’s position Xi 
is updated and given by Eq. (13).

( ) ( ) ( ) ( )( )1 2i i i iX t X t C K rand W K X tρ+ = + − + −  (13)

Where Xi (t + 1) is the new increment position at time (t + 1), Xi at time (t) is the previous position, C is the position 
of the commander, K is the position of the king, Wi is the weight and [ ]0,1ρ ∈  is the factor used for more flexibility 
to choose a value depending on the objective function. The soldier returns to the former location, should the attack 
succeed in the new location (Fn) is lower than in the prior location (Fp) which is given by Eq. (14):

( ) ( )( ) ( )( )1 1i i n p i n pX t X t F F X t F F+ = + ≥ + <  (14)

 
Figure 2. Parameter extraction by integrating Newton-Raphson method with WSO-HO optimization algorithm.
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The soldier’s rank (Ri) will be raised if he updates his position successfully given in Eq. (15):

( )( ) ( )( )1i i n p i n pR R F F R t F F= + ≥ + <  (15)

The new weight is computed as follows based on the rank indicated by Eq. (16):

1
max_

i
i i

RW W
itr

α
 

= − 
 

 (16)

Where α is weighing factors, which gives a competitive algorithm in this case α = 1
The locations of the King, the commander of the army and an arbitrary soldier serve as the basis for the position 

update in the second strategy presented in Eq. (17):

( ) ( ) ( )( ) ( )( )1 2 .i i rand i iX t X t K X t rand W C X tρ+ = + − + −  (17)

4. Hippopotamus Optimization Algorithm (HOA)
The Hippopotamus Optimization Algorithm (HO) is a meta-heuristic optimisation algorithm inspired by the behaviour 
of hippopotamuses in their natural environment. The algorithm simulates the movement and interactions of 
hippopotamuses in a river or pond, as well as their defence mechanisms against predators (Amiri et al., 2024). 
Obviously, there are three phases for this algorithm. In phase one, the hippopotamuses’ position is updated in the 
river or pond, in this step the hippopotamuses move around the river or pond in search of food. They are attracted to 
the dominant hippopotamus position (DHp) and to the mean position of a random group of hippopotamuses (MG). 
Note that, I1 and I2 are integers between 1 and 2 which are described by Eqs (18) and (19).

( ) ( ) ( ) ( )( )1 1,: ,: 1,1 .  ,:pX i X i rand DHp I X i= + −  (18)

( ) ( ) ( )2 2,: ,: .  pX i X i A DHp I MG= + −  (19)

Phase two is hippopotamus defence against predators and in this phase, the hippopotamuses defend themselves 
against predators by moving away from them. They use different strategies depending on their fitness compared to 
the predator as described by Amiri et al. (2024), which is represented by Eq. (20).

( ) ( ) ( )3
1,: ,: . .

cos 2 distanceLeaderp
bX i RL i predator

c d gπ
   = +     −   

 (20)

Where Xp3 is a hippopotamus position which was faced to predator [ ]1,1.5c∈  is a uniform random, [ ]2,4b∈  is a 
uniform random, [ ]2,3distanceLeader∈  is a uniform random number, RL is a random vector with a Levy distribution, 
utilised for sudden changes in the predator’s position during an attack on the hippopotamus, [ ]1,1g∈ −  represents 
a uniform random number.

In phase three, the Hippopotamus escapes from the Predator. The hippopotamuses that are being chased by 
predators try to escape by moving in random directions, as described by Eq. (21).

( ) ( ) ( ) ( )( )4 ,: ,: 1,1 .p LOCAL LOCAL LOCALX i X i rand LO D HI LO= + + −  (21)

where: ,  LOCAL LOCALLO HI  denote the lower and upper bounds of the j-th decision variable, respectively and

( )1 ,:pX i  is the i-th hippotamus’s new location in phase 1.
( )2 ,:pX i  is the i-th hippotamus’s new location in phase 2.
( )3 ,:pX i  is the i-th hippotamus’s new location in phase 3.
( )4 ,:pX i  is the i-th hippotamus’s new location in phase 4.

( ),:X i  is the current position of the i-th hippopotamus.
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5. New Hybrid Approach
5.1. WSO-HO algorithm hybridisation
The hybrid algorithm is given by incorporating the War Strategy Optimization Algorithm (WSO) with Hippopotamus 
Optimization Algorithm (HO). The new hybrid approach is a meta-heuristic optimisation Algorithm that combines 
the strengths of two distinct algorithms. This combination aims to exploit the advantages of each algorithm and 
overcome their individual limitations. So, the WSO-HO hybrid algorithm is a combination of the WSO and HO. Three 
modifications have been made to the WSO-HO hybrid algorithm to improve its performance for the extraction of 
PV parameters. The first modification is to the WSO algorithm. In the original WSO algorithm, the weights of the 
soldiers are updated using the following Eq. (22):

( ) ( ) ( )
1 11 1

_
Wg i

W i W i
Max iter

 
= × × − 

 
 (22)

Where W1(i) is the weight for the i-th soldier, Wg(i) is the number of iterations that the i-th soldier has not 
improved its fitness, and Max_iter is the maximum number of iterations. The modified WSO algorithm in the hybrid 
WSO-HO algorithm updates the weights W1 using the following Eq. (23):

( ) ( ) ( ) 2

1 11 1
_

Wg i
W i W i

Max iter
 

= × × − 
 

 (23)

In the original WSO algorithm, the exponent is 1, while in the modified WSO algorithm in WSO-HO, the exponent 
is 2. This change makes the modified WSO algorithm more explorative than the original WSO algorithm. This is 
because the weights W1 are decreased by a larger amount each iteration in the modified WSO algorithm. This 
encourages the algorithm to explore new areas of the search space and to avoid getting stuck in a local optimum.

The second modification consists of adding the third step of HO to this hybrid. This step of the HO algorithm 
is a local search phase which helps to improve the convergence of this algorithm, which is presented in Figure 3. 
However, this step is added to the WSO-HO hybrid algorithm to further improve its performance. The third phase of 
the HO algorithm works by generating a new solution Xp4(i) for each soldier (i) using the Eq. (24):

( )
( ) ( ) ( )
( ) ( ) ( )4

,: 1,1
,:

,: 1,1
LOCAL LOCAL

p
LOCAL LOCAL

X i D rand HI LO
X i

X i D rand HI LO

 + × × −= 
− × × −

 (24)

Where X (i,:) is the current solution for soldier i, and note that the search space’s lower and upper bounds 
are denoted by LOLOCAL and HILOCAL, respectively, D is a vector random variables, and rand (1, 1) is generator 
random number between 0 and 1. The new solution Xp4 (i) is then evaluated using the objective function (fobj). The 
existing solution is substituted with the new solution, when the new solution proves to be greater. The third step of 
the WSO-HO algorithm modification introduces a permutation and swap step after the HO phase. Obviously, this 
modification is considered to enhance the optimisation process. This step begins with the random permutation 
of population indices, followed by the permutation of solution components to generate new configurations. Each 
new configuration is then evaluated for its fitness and if a new fitness value is better than the current best value, 
it replaces the old one. This process helps to diversify the population and avoid premature convergence, thus 
improving the algorithm’s robustness and efficiency, which is presented in Figure 4. Experimental results show a 
significant improvement in fitness values compared to traditional methods, highlighting the effectiveness of this 
permutation-based optimisation approach in complex solution spaces.

5.2. WSO-HO algorithm hybridisation with NR
The hybridisation approach described here combines the WSO-HO algorithm with the NR method to improve 
the accuracy of parameter extraction for PV cells, as outlined in Algorithm 2 (Figure 5). The process begins with 
the collection of voltage and current measurements from PV cells, which serve as critical reference data. These 
measurements are essential for calculating error metrics and evaluating the performance of the solutions generated 
by the algorithms.
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The initialisation phase leverages the WSO-HO algorithm. The first stage, driven by the WSO component, 
explores the solution space extensively to identify initial parameter estimates. This exploration phase is pivotal, as it 
provides a comprehensive understanding of the potential solution landscape. The subsequent stage utilises the HO 
component, which refines these initial estimates by concentrating on local optimisation. This targeted exploitation of 
the local search space enhances the accuracy of parameter estimates by zeroing in on the most promising regions.

After the WSO-HO algorithm delivers optimised values, the NR method is applied to further fine-tune these 
estimates. In each iteration, the NR formula updates the parameter estimates by computing the function value 
and its derivative. A specific convergence criterion is evaluated to determine if the estimates have stabilised. 
Upon achieving convergence, the objective function is computed to assess the solution’s quality by measuring the 

Figure 3. Flow Chart of Hybrid WSO-HO Algorithm.
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discrepancy between the observed and calculated values based on the current estimates. If the objective function 
fails to meet the pre-defined precision threshold, the parameters are reinitialised using the WSO-HO algorithm and 
the entire process is repeated. This iterative procedure continues until the optimal solution is identified, ensuring the 
final parameter estimates are both precise and reliable.Overall, this hybridisation strategy effectively integrates the 
broad exploration capabilities of WSO, the localised refinement of HO and the iterative precision of the NR method. 
This robust framework achieves high accuracy in parameter optimisation, making it particularly suitable for PV 
applications.

Input: 

SearchAgents, Max_iterations, lb, ub, dim, fobj 

Output: 

Best_score, Best_pos, Convergence_curve, HO_curve1. 

For (iter = 1) to Max_iterations: 

1. For (i = 1) to SearchAgents: 

- Update the position of solution (i) using the WSO rules in the new position has a better 

fitness 

then 

- Update the current position and fitness of solution (i) 

- If the new position has a better fitness than King: 

- Update King 

2. Update the weight factor (W_1) of solution (i) 

3. Update the Convergence_curve with the fitness of King 

4. For (i = 1) to Search Agents: 

- Perturb the position of solution (i) using the HO rules if the new position has a better 

fitness then 

- Update the current position and fitness of solution (i) 

- If the new position has a better fitness than King: 

- Update King 

5. Update the HO_curve with the fitness of King 

6. For (i = 1) to SearchAgents: 

- Generate a random index for permutation (idx = rand (1, pop_size) 

- Permute the components of the solution \(X(i) = X(i) \gets X(idx)) 

- Evaluate the new solution (fitness(i) = fobj(X(i))) if (fitness(i) King_fit) 

- (King_fit = fitness(i)); King (gets X(i)) 

Return: 

Best_score, Best_pos, Convergence_curve, HO_curve 

 

Algorithm 1. Hybrid WSO-HO Algorithm. 

Figure 4. Hybridization WSO-HO Algorithm.
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Input: 

Voltage measurement data (V), current measurement data (I), convergence threshold (Gamma), maximum 

number of iterations (N_{max}) 

Output: 

Optimized parameter estimates (x*) 

Procedure: WSO-HO-Newton-Raphson 

1. Step 1: Initialization with WSO 

- Generate an initial set of candidate parameters using the WSO algorithm. 

- Evaluate the candidate parameters using the data (V) and (I). 

- Select the best parameters found by WSO to serve as the starting point for HO. 

2. Step 2: Refinement with HO 

- Refine the initial parameters with the HO algorithm to obtain (x_0). 

- Check the quality of (x_0) by computing the mean square error. 

- Proceed to the next step with (x_0) as the initial estimate for Newton-Raphson. 

3. Step 3: Local Optimization with Newton-Raphson 

- Initialize (k = 0). 

- While (not converged) and (k < N_{max}): 

- Compute the update (x_{k + 1} = x_k - frac{g(x_k)} {g’(x_k)}), where (g(x) \) is the function to minimize. 

- If (|x_{k + 1} - x_k| < epsilon) 

then 

- Convergence achieved: Set (x* = x_{k + 1}) and exit. 

- Else 

- Update (k = k + 1) and continue the iteration. 

- End while. 

4. Step 4: Objective Function Calculation 

- Compute the final objective function error = (I_{L,meas} - I_{L,cal})2). 

- Return (x*), the optimized parameters. 

End the procedure 

Algorithm 2. Hybrid WSO-HO algorithm with NR for parameter estimation. 

Figure 5. Hybrid WSO-HO Algorithm with NR method. NR, Newton-Raphson.

6. Simulation Results and Parameter Optimisation
In the following, we investigate the SDM and the DDM parameter extraction performance of the hybrid algorithm 
WSO-HO. The data utilised in this study came from an experimental setup using a 57 mm-diameter commercial 
silicon solar cell (R.T.C. France) that was running at 25°C and 1000 W/m2 of solar radiation (Arandian et al., 2022). 
Table 2 displays the parameter combinations of the WSO-HO algorithm used for SDM and DDM. Different numbers 
of parameters must be extracted for each model: five for SDM and seven for DDM. Setting the bounds for each 
parameter and so establishing the search space of the algorithm is a necessary step before starting the optimisation 
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process. Numerous studies (Amiri et al., 2024) have used these limitations, which guarantee the consistency and 
dependability of the analysis.

To ensure consistency, Matlab Simulink has simulated the WSO-HO algorithm thirty times (El-Khatib et al., 
2023). A variety of solar cell models’ parameters are extracted using optimisation algorithms. The NR method 
is used to simulate the objective function that these techniques require in order to evaluate potential solutions. 
Bounded spaces are used to construct optimisation problems. Notably, Table 1 lists these boundaries. Previous 
studies (Green, 1982; Villalva et al., 2009) indicate that these parameters and their bounds ensure that simulations 
realistically represent the operational capabilities of solar cells, enabling engineers and researchers to optimise PV 
systems.

6.1. Results using the single-diode model
In this section, we present the experimental results of optimising the SDM using the proposed WSO-HO hybrid 
approach. Additionally, we compare the performance of our approach with other recent optimisation algorithms 
of PV solar cell models (Huang et al., 2020). Table 2 presents the estimated parameters of the SDM obtained 
using WSO-HO, WSO, HO (Ayyarao and Kumar, 2022), the Gazelle optimization algorithm (GOA) and Gazelle 
optimization- Nelder–Mead algorithms (GOANM). The results reveal that the WSO-HO algorithm achieves higher 
accuracy in parameter estimation compared to WSO, HO, GOA and GOANM (Ekinci et al., 2024).

This underscores the superior performance of the proposed WSO-HO approach in fine-tuning the SDM 
parameters (Ekinci et al., 2024). To further evaluate the performance of the WSO-HO algorithm, Table 3 presents 
statistical RMSE values obtained for the SDM using both HO and WSO (Alsattar et al., 2020). The results consistently 
show that the WSO-HO algorithm achieves lower RMSE values compared to WSO, HO, GOA and GOANM. This 
indicates that the proposed WSO-HO approach can accurately estimate the (I-V) and (P-V) characteristics of the 
SDM, resulting in better model performance.

The convergence behaviour of the WSO-HO, WSO and HO algorithms during the SDM optimisation process are 
presented in Figure 6a,b (Arandian et al., 2022). These figures demonstrate that the WSO-HO algorithm converges 
to a stable solution more rapidly and exhibits smoother convergence behaviour compared to WSO and HO. This 
further confirms the effectiveness of the proposed WSO-HO approach. The results show close agreement between 
experimental and estimated values, indicating the precise modelling capabilities of WSO-HO (Ekinci et al., 2024). 
Additionally, Figure 6a,b respectively illustrate the (I-V) and (P-V) curve characteristics of the optimised SDM using 
the WSO-HO algorithm. Figure 7a,b demonstrates that the optimised model accurately captures the behaviour of 
the solar cell, with curves closely matching experimental data.

Table 3 comprehensively compares the estimated parameters and RMSE values for the SDM obtained using the 
WSO-HO algorithm with other approaches such as WSO and HO, as well as other recent optimisation algorithms 
including Chaotic Capuchin Neural Network with Gaussian Bare-bones Optimization (CCNMGBO), improved multi-
objective fitness optimized by Levy (IMFOL), randomized teaching-learning-based optimization (RTLBO), Dynamic 
Levy Mutated Vortex Optimization (DLMVO) and others. The results highlight the superior performance of GOANM, 
as it achieves the lowest RMSE value among all compared methods. This underscores the importance of the 
proposed GOANM algorithm in accurately modelling the behaviour of the RTC France solar cell (Arandian et al., 
2022). In summary, the experimental results consistently demonstrate that WSO-HO outperforms other optimisation 
approaches, as evidenced by its accurate parameter estimation, low RMSE values, rapid convergence and close 
alignment with experimental data. These findings highlight the significance and effectiveness of WSO-HO in SDM 
optimisation for PV solar systems, particularly for the RTC France solar cell case study.

Table 2. The boundaries of extracted PV parameters for SDM and DDM

Parameter Lower bound Upper bound

Iph (A) 0 1

Isd, Isd1, Isd2, (µA) 0 1

Rs (Ω) 0 1

Rsh (Ω) 0 100

n, n1, n2 1 2

DDM, double diode model; PV, photovoltaic; SDM, single diode model.
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Table 3. The SDM parameters estimated at the best RMSE

Algorithm Iph (A) Isd1(µA) Rs (Ω) Rsh (Ω) n RMSE

WSO-HO 0.76079 0.31069 0.036547 52.8899 1.4773 7.729856E-04

WSO 0.76078 0.31069 0.03654 52.889 1.47727 7.730056E-04

HO 0.76774 0.54060 0.03164 19.31912 1.53746 8.753850E-04

GOANM (Amiri et al., 2024) 0.76079 0.31069 0.036547 52.8899 1.4773 7.729900E-04

GOA (Amiri et al., 2024) 0.76070 0.34001 0.036182 55.7021 1.4864 7.870400E-04

IMFOL (Qaraad et al., 2023) 0.76078 0.32302 0.036377 53.7186 1.4812 9.860200E-04

RTLBO (Yu et al., 2023) 0.76078 0.32302 0.036377 53.7185 1.4812 9.860200E-04

DLMVO (Ekinci et al., 2024) 0.7608 0.3230 0.0364 53.7185 1.4812 9.860200E-04

OBL-RSACM (Li et al., 2023) 0.76080 0.32203 0.03643 53.3521 1.4812 9.845200E-04

AHO (Bogar, 2023) 0.76079 0.31086 0.036540 52.8595 1.2155 7.730600E-04

PSOCS (Fan et al., 2022) 0.76078 0.32302 0.036377 53.7185 1.4812 9.860200E-04

ELADE (Gu et al., 2023) 0.76077 0.30839 0.036555 52.8267 1.4765 7.754700E-04

ILSA (Huang et al., 2020) 0.76077 0.32302 0.036377 53.7185 1.4812 9.860200E-04

IHGS (Xu et al., 2022) 0.76078 0.32302 0.0364 53.7178 1.4812 9.860200E-04

BES (Alsattar et al., 2020) 0.7607 0.3230 0.0364 53.7185 1.4812 9.860200E-04

DE (Yu et al., 2022) 0.7607 0.3209 0.0363 54.1134 1.4709 7.769200E-04

BES (Nicaire et al., 2021) 0.7683 0.3262 0.0367 54.2557 1.4958 9.860000E-04

ITSA (Arandian et al., 2022) 0.7606 0.3298 0.0363 56.5694 1.4832 9.933900E-04

AHO, artificial hummingbird optimization; DLMVO, Dynamic Levy Mutated Vortex Optimization; ILSA, Improved Learning Search Algorithm, 
GOA, Gazelle optimization algorithm; GOANM, Gazelle optimization- Nelder–Mead algorithms; IMFOL, improved multi-objective fitness optimised 
by Levy; RMSE, root mean square error; RTLBO, randomized teaching-learning-based optimization; SDM, single diode model; TSA, tunicate swarm 
algorithm; ELADE, Elite Learning Adaptive Differential Evolution, PSOCS, Particle Swarm Optimization and Cuckoo Search; BES, Bald Eagle Search 
algorithm; CGO-LS, Chaos Game Optimization-Least Squares algorithm; DE, Differential Evolution algorithm; ELADE, Elite Learning Adaptive 
Differential Evolution; IHGS, Improved Hunger Games Search; ISCA: Improved Sine Cosine Algorithm; ITSA, Improved Tunicate Swarm Algorithm; 
PSOCS, Particle Swarm Optimization with Cuckoo Search algorithm; RTC France solar cell, a standard silicon solar cell used for PV model validation 
an parameter extraction.

Figure 8 illustrates the convergence and robustness curves for various optimisation algorithms applied to the 
SDM. Among these, the hybrid WSO-HO algorithm demonstrates superior performance, achieving optimal scores 
rapidly in the early iterations. This efficiency underscores its ability to explore the search space effectively. In 
contrast, other algorithms such as AHO (Bogar, 2023), mountaineering team-based optimization (MTBO), whale 
optimization algorithm (WOA), tunicate swarm algorithm (TSA) (Arandian et al., 2022), sine cosine algorithm (SCA) 
and grey wolf optimizer (GWO) exhibit slower convergence rates. Their relative inefficiency in reaching lower scores 
early on may limit their practical applicability. For this comparison, the optimisation algorithms were selected based 
on established studies in the literature. All simulations utilised the NR method, maintaining identical temperature 

  
(a) (b)

Figure 6. Curves with the measured and estimated data. (a) (P, V) data for SDM. (b) (I, V) data for SDM. SDM, single diode model.
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conditions and the same current and voltage data extracted from RTC France cells. This analysis highlights the 
robustness and reliability of the WSO-HO algorithm. It not only achieves superior scores but also demonstrates 
consistent performance across a wide range of iterations, making it a preferred choice for optimising PV models.

7. Results Using the Double-diode Model
In this section, we present the experimental results of optimising the double-diode model using the proposed WSO-
HO approach (Xu et al., 2022). We also compare the performance of this approach with other recent optimisation 
algorithms for PV solar cell models. To further evaluate the effectiveness of the WSO-HO algorithm, Table 4 

  
(a) (b)

Figure 7. Convergence and robustness curves for SDM. (a) Curves convergence (b) Curves robustness. SDM, single diode model.

Figure 8. Convergence and Robustness Curves of Optimization Algorithms Applied to the SDM. 

54



Jeridi et al.

presents the RMSE statistical values obtained for the double-diode model using both WSO and HO. The results 
clearly indicate that the WSO-HO algorithm consistently achieves lower RMSE values compared to WSO, HO, 
GOANM and GOA. AHO, artificial hummingbird optimization; DDM, double diode model; DLMVO, Dynamic Levy 
Mutated Vortex Optimization; GOA, Gazelle optimization algorithm; GOANM, Gazelle optimization- Nelder–Mead 
algorithms; IMFOL, improved multi-objective fitness optimized by Levy; RMSE, root mean square error; RTLBO, 
randomized teaching-learning-based optimization; TSA, tunicate swarm algorithm.

Figure 9 a,b illustrates the (P-V) and (I-V) characteristics of the optimised DDM achieved using the WSO-HO 
algorithm. The close alignment of the curves with experimental data confirms the model’s ability to accurately 
represent the behaviour of the solar cell. This underscores the effectiveness of the WSO-HO approach in enhancing 
the DDM’s performance and reliability.

Figure 10a,b clearly demonstrates that the WSO-HO algorithm converges to a stable solution more rapidly 
and exhibits smoother convergence behaviour compared to WSO and HO. This highlights the efficiency and 

Table 4. The DDM Parameters Estimated at the best RMSE

Algorithm Iph (A) Isd1 (µA) Isd2 (µA) Rs (Ω) Rsh (Ω) n1 n2 RMSE

WSO-HO 0.760805 0.0854343 0.9991529 0.0376485 56.0775146 1.37756104 1.81810675 7.42069103E-04

WSO 0.760804 0.069334 0.884680 0.0376813 55.918552 1.3648682 1.7688404 7.4378257E-04

HO 0.7607879 0.3106909 0.3106909 0.0365467 52.8899092 1.47727164 1.47727160 8.55885e-04

GOANM [Amiri, H.H et al., 2024] 0.76081 0.11624 0.9768 0.037459 55.7298 1.3994 1.8597 7.4339E-04

GOA [Amiri, H.H et al., 2024] 0.76079 0.19704 0.4356 0.03688 54.2616 1.4417 1.8186 7.5810E-04

IMFOL [Qaraad, M. et al., 2023] 0.76078 0.76632 0.2251 0.036731 55.6567 2.0000 1.4508 9.8252E-04

RTLBO [Yu, X. et al., 2023] 0.76078 0.22597 0.7494 0.03674 55.4855 1.4510 2.0000 9.8248E-04

DLMVO [Ekinci,S., et al., 2024] 0.7608 0.7493 0.2260 0.0367 55.4854 2.0000 1.4510 9.8248E-04

OBL-RSACM [ Li, J. et al., 2023] 0.76033 0.39986 0.2677 0.03669 56.0102 1.4151 2.0000 9.8237E-04

AHO [Bogar,E., 2023] 0.76078 0.27988 0.2768 0.036530 54.2856 1.9563 1.4682 9.8401E-04

PSOCS [Fan, Y., et al., 2022] 0.76078 0.22598 0.7493 0.036740 55.4855 1.4510 2.0000 9.8248E-04

ELADE [Gu, Z. et al., 2023] 0.76072 0.24468 0.3802 0.036927 53.5130 1.4564 1.9899 7.6480E-04

ILSA [Huang, T., et al., 2020] 0.76078 0.50569 0.2557 0.036609 54.9246 2.0000 1.4614 9.8270E-04

IHGS [Xu, B., et al., 2022] 0.76078 0.74935 0.2260 0.03674 55.48542 2.0000 1.45102 9.8248E-04

BES [Alsattar, H. A., et al., 2020] 0.7608 0.2259 0.7493 0.0367 55.4854 1.4510 2.0000 9.8248E-04

DE [Yu, S., 2022] 0.7605 0.42322 0.1873 0.02061 51.9345 1.8758 1.4360 7.6300E-04

ITSA [Nicaire, N. F., et al., 2021] 0.7608 0.9731 0.1679 0.0369 53.8368 1.9213 1.4281 9.82E-04

WSO, HO, GOANM and GOA. AHO, artificial hummingbird optimization; DDM, double diode model; DLMVO, Dynamic Levy Mutated Vortex 
Optimization; GOA, Gazelle optimization algorithm; GOANM, Gazelle optimization- Nelder–Mead algorithms; IMFOL, improved multi-objective fitness 
optimized by Levy; RMSE, root mean square error; RTLBO, randomized teaching-learning-based optimization; TSA, tunicate swarm algorithm.

 
(a) (b)

Figure 9. Curves with the measured and estimated data. (a) Curves (P, V) for DDM. (b) Curves (I, V) for DDM. DDM, double diode model.
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effectiveness of the proposed WSO-HO approach (Jeridi et al., 2024), Using performance indicators such as mean, 
standard deviation and range (Min, Max), Table 3 provides the performance metrics of the WSO-HO algorithm 
applied to the DDM for the RTC France solar cell case study (Fan et al., 2022). The results reveal a strong agreement 
between estimated and experimental values, confirming the algorithm’s precise modelling capabilities. Table 3 
comprehensively compares the estimated parameters and RMSE values achieved with WSO-HO against recent 
optimisation techniques, including CCNMGBO, IMFOL, RTLBO, DLMVO, OBL-RSACM, CGO-LS, AHO, PSOCS, 
ELADE, COA, SDGBO, IHGS, BES, DE, ITSA and TSA. The findings indicate that WSO-HO outperforms these 
methods by consistently achieving the lowest RMSE value, underscoring its superior accuracy in modelling the 
RTC France solar cell using the DDM (Bakhshi-Jafarabadi et al., 2019). The convergence and robustness curves 
of various optimisation algorithms applied to the DDM are presented in Figure 11. Among these, the hybrid WSO-
HO (War Strategy Optimization combined with Hippopotamus Optimization) algorithm stands out for its superior 
performance. It achieves optimal results quickly in the early stages of iterations, reflecting its capability to efficiently 
explore the search space. In comparison, other methods like AHO, MTBO, WOA, TSA, SCA and GWO display 

Figure 11. Convergence and Robustness Curves of Optimisation Algorithms Applied to the DDM. DDM, double diode model.

(a) (b)
Figure 10. Convergence and robustness curves for DDM. (a) Curves convergence (b) Curves robustness. DDM, double diode model.
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Table 5. Analysis of RMSE for Single and Double PV models

Model Algorithm Min Mean Max STD

SDM WSO-HO 7.72985671E-04 7.7308567E-04 7.7410567E-04 6.138516E-17

WSO 7.73005671E-04 8.1665894E-04 0.002083 2.3920836E-04

HO 8.75385E-04 0.00233 0.00629359 1.33368-03

GOA [Amiri, H. H et al., 2024] 7.5810E−04 7.7695E−04 8.8385E−04 2.4314E−05

GOANM [Amiri, H. H et al., 2024] 7.4339E−04 7.5263E−04 7.6714E−04 7.3732E−06

ELAD [Gu, Z. et al., 2023] 9.8602E-04 9.8602E-04 9.8605E-04 1.753E-10

DE [Yu, S., 2022] 9.811E-04 1.02874E-03 1.0813E-03 2.94961E-05

ISCA [Chen, H.,2019] 7.3423E-04 7.2302E-04 7.4592E-04 1.30287E-06

ITSA [Nicaire, N. F., et al., 2021] 9.86E-04 7.730062E-04 9.89E-04 5.70E-16

DDM WSO-HO 7.420691E-04 7.4967098E-04 7.72985671E-04 1.08074E-05

WSO 7.4378257E-04 8.3867102E-04 0.00099892 1.6562955E-04

HO 8.55885e-04 0.00265008 0.006542 1.74708E-03

GOA [Amiri, H.H et al., 2024] 7.5810E−04 7.7695E−04 8.8385E−04 2.4314E−05

GOANM [Amiri, H.H et al., 2024] 7.4339E−04 7.5263E−04 7.6714E−04 7.3732E−06

ELAD [Gu, Z. et al., 2023] 9.8252E-04 1.32602E-03 1.000562E-03 9.15E-12

DE [Yu, S., 2022] 9.8607E-04 9.8874E-04 7.730062E-04 2.4696E-06

ISCA [Chen, H., 2019] 2.2142E-04 1.66043E-02 9.93218E-04 1.30287E-06

ITSA [Nicaire, N. F., et al., 2021] 9.9804E-04 9.99991E-04 3.799062E-02 6.33E-06

DDM, double diode model; GOA, Gazelle optimization algorithm; GOANM, Gazelle optimization- Nelder–Mead algorithms; PV, photovoltaic; RMSE, 
root mean square error; SDM, single diode model; STD, standard deviation.

slower convergence speeds. These algorithms struggle to reach lower scores promptly, which may reduce their 
practicality. This analysis underscores the robustness of the WSO-HO algorithm, as it consistently delivers better 
scores and maintains stable performance over a broad range of iterations, making it a more effective option for 
optimising PV models.

The performance of the hybrid WSO-HO algorithm is compared against several other optimisation algorithms for 
both the SDM and the DDM as presented in Table 5.

For the SDM, the WSO-HO algorithm achieves superior results with a minimum RMSE of 7.7298E-04, 
a mean of 7.7308E-04, and an extremely low standard deviation (STD) of 6.1385E-17, indicating both high 
precision and consistency. In contrast, standalone WSO and HO algorithms show less favourable results, 
with WSO presenting a higher mean error of 8.1665E-04 and HO demonstrating greater variability with an 
STD of 1.33368-03. Similarly, other algorithms like GOA, GOANM, COA (Gu et al., 2023) and DE perform 
reasonably well but fail to match the accuracy and stability of WSO-HO. Notably, GOANM (Amiri et al., 2024) 
achieves a minimum RMSE of 7.4339E-04, which is close to WSO-HO, but its standard deviation remains 
slightly higher.

For the DDM, the hybrid WSO-HO algorithm again outperforms other methods, achieving a minimum RMSE of 
7.4206E-04 and a very low STD of 1.08074E-05, highlighting its robustness and reliability. In comparison, the WSO 
and HO algorithms exhibit higher mean errors (8.3867E-04 for WSO and 0.00265 for HO) and greater variability. 
Algorithms such as GOANM and GOA (Amiri et al., 2024) perform comparably well, with GOANM achieving a 
minimum RMSE of 7.4339E-04, but they still fall short in terms of consistency and precision. Other approaches, 
including COA, DE, ISCA and ITSA, display significantly higher errors and standard deviations, limiting their 
effectiveness in achieving rapid convergence with minimal error.

Overall, the WSO-HO algorithm demonstrates its superiority by achieving the lowest RMSE values, rapid 
convergence and exceptional stability across both models, making it the most reliable and efficient choice for 
optimising PV parameters.

8. Conclusion
This study proposes a hybrid optimisation approach combining the WSO-HO algorithm with the NR method to 
address the challenge of accurate parameter estimation in PV systems. The results demonstrate that WSO-HO 
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